
Anomalous diffusion in linear shear flows

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 1023

(http://iopscience.iop.org/0305-4470/30/4/006)

Download details:

IP Address: 171.66.16.112

The article was downloaded on 02/06/2010 at 06:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 1023–1030. Printed in the UK PII: S0305-4470(97)75713-5

Anomalous diffusion in linear shear flows

Albert Compte†§, David Jou†‖ and Yoshishige Katayama‡
† Departament de Fı́sica, F́ısica Estad́ıstica, Universitat Aut̀onoma de Barcelona, 08193
Bellaterra, Catalonia, Spain
‡ College of Engineering, Nihon University, Koriyama, Fukushima 963, Japan

Received 20 June 1996, in final form 3 October 1996

Abstract. Anomalous diffusion in the presence of several linear flows is studied by means of a
nonlinear diffusion formalism. The results generated are particularly interesting for simple shear
flows. We compare our results for this latter situation with those obtained from an alternative
description for anomalous diffusion, namely fractional diffusion.

Nonlinear diffusion has been attracting the attention of many researchers in connection
with diffusion on fractals [1], diffusion in plasmas [2] and transport in porous media [3].
The kind of nonlinear diffusion which will be studied here has the remarkable property
of being directly derived from well known equations of macroscopic physics such as the
continuity equation, Darcy’s law for flows in porous media and the equation of state of the
polytrope [4]. This allows for an immediate identification of physical instances where it
might accurately describe the diffusion process. Furthermore, this nonlinear diffusion has
been recently related to a new statistical mechanics formalism which claims to describe the
statistics of random media [5, 6]. These works suggest that nonlinear diffusion might play
a relevant role as a description of anomalous diffusion (i.e. diffusion in which the square of
displacement is not proportional to timet but to some real power oft). Other alternative
formalisms, such as fractional dynamics [7–9], show a close connection with anomalous
diffusion as well. In this case, though, the foundations are not to be found in macroscopic
physics but in the stochastic details of the process giving rise to diffusion. In [8] it has
been proved that such a diffusion equation is the natural dynamic equation of Lévy flights,
the most elegant and natural generalization of Brownian motion. It may prove useful to
explore which of these two formalisms provides a better description of anomalous diffusion
under some prescribed conditions.

Here we shall study the diffusion of added substances in a shear flow. This is a topic
of enormous environmental and industrial importance [10] and is of considerable interest in
polymer physics and colloid science as well. Indeed, the presence of a simple shear changes
the behaviour〈x2〉 ∼ t to 〈x2〉 ∼ t3 (with x the displacement in the direction of the flow).
Much attention has already been paid to this subject by including anisotropies, gravitational
effects and sources or sinks [10] but never has anomalous diffusion been allowed into the
scheme. In this paper we deal with nonlinear diffusion in linear shear flows. We also
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consider dimensional arguments to draw conclusions on the applicability of the fractional
derivatives formalism to the analysis of diffusion in shear flows.

The nonlinear diffusion we are interested in is, in a static fluid,

∂n

∂t
= D∇2nq (1)

where n(x, t) is the density of diffusing substance,D the diffusion constant andq a
parameter whose departure from unity indicates the degree of anomality in diffusion.
Equation (1) has been solved in [1, 6] for an initial delta distribution and it has been
found that it yields a characteristic time scaling of dispersion of the form

〈x2〉 ∼ t 2
3q−1 (2)

in a three-dimensional space and

〈x2〉 ∼ t 1
q (3)

in a two-dimensional space. Both (2) and (3) clearly show the anomalous diffusive properties
of equation (1).

We shall now study the following nonlinear diffusion-advection equation

∂n

∂t
+∇(nv) = D∇2nq (4)

for the case of a linear flowv = A(t) · x in an infinite medium.
In the same spirit of [10, 11] we propose a solution in the form

n(x, t) = B(t)
[

1+ 1− q
2

(x− x̄) · σ−1 · (x− x̄)
] 1
q−1

q < 1 (5)

where the quantitiesB(t), x̄(t) andσ(t) (the latter is taken to be a symmetric matrix without
loss of generality) must be determined in terms of the shear rateA and the diffusion constants
D andq.

Substitution of (5) into (4) leads to the following three differential equations:

dB

dt
= −Btr(A)− qDBq tr(σ−1) (6)

dx̄

dt
= A · x̄ (7)

dσ

dt
= A · σ + [A · σ]T + 2qDBq−11. (8)

Furthermore, we shall demand ofn(x, t) to be normalized to unity throughout the time
evolution:∫
n(x, t)dNx =

∫
B(t)

[
1+ 1− q

2
(x− x̄) · σ−1(x− x̄)

] 1
q−1

dNx = 1 (9)

whereN is the dimension of the space where diffusion takes place.
The integral in (9) is computed by changing to a new set of space coordinatesy such

that (x− x̄) ·σ · (x− x̄) = y ·y and then using spherical coordinates. This recasts (9) into

�N
√

detσB

(
1− q

2

)−N/2 ∫ ∞
0
rN−1(1+ r2)

1
q−1 dr = 1 (10)

where�N = 2πN/2/0(N/2) is the surface of a(N − 1)-dimensional sphere of unit radius
and0(x) stands for the Gamma function of real argumentx.
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Denoting withIN(q) the integral in (10), one finds

B(t) = 1

�NIN(q)

(
1− q

2

)N/2√
detσ−1. (11)

In particular, forN = 2 andN = 3 one obtains

B(t) = q

2π

√
detσ−1 (12)

and

B(t) =
( q

2π

)3/2 0
(

q

1−q
)

√
q

1−q 0
(

q

1−q − 1
2

)√detσ−1 q > 1
3 (13)

respectively.
Now, with the definition (11) forB(t), it is easy to prove that equation (6) is satisfied

and we are actually left with two uncoupled differential equations, namely (7) and (8),
which are to be solved for a givenA(t).

Before considering a particular case, we make one further general remark regarding the
physical meaning of the vector̄x(t) and the matrixσ(t): on one hand,̄x(t) is easily seen
to correspond to the mean position at timet by explicitly performing the integration of
xn(x, t) over space with the aid of the change of variabley = x− x̄. On the other hand,
a direct computation ofσ−1 · 〈(x− x̄)(x− x̄)〉 leads to the result

σ−1 · 〈(x− x̄)(x− x̄)〉 = 1

1+ N+2
2 (q − 1)

1 (14)

whence one concludes thatσ and the matrix of correlations〈xx〉 are linearly related

〈xx〉 = 1

1+ N+2
2 (q − 1)

σ + x̄x̄. (15)

Thus, by solving equation (8) forσ we directly obtain information about the second
moments of the distribution and, in particular, we obtain〈x2〉 and the exponent of anomalous
diffusion.

We now turn to an incompressible stationary linear shear flow in two dimensions, such
that

A =
(

0 G

εG 0

)
(16)

whereG is constant and measures the shear rate andε is a parameter ranging from−1 to
1 and giving rise to different kinds of shear flows, as pure rotation (ε = −1), simple shear
(ε = 0), and pure elongation (ε = 1).

The initial condition we will impose to study the diffusion of a point-like drop of
substance isn(x, t = 0) = δ(x − x0). A δ-function initial condition is equivalent to
σ(t = 0) = 0 as discussed in [11]. Furthermore, since the initial concentration is centred
aroundx = x0, we havex̄(t = 0) = x0 whence, from (7)(

x̄

ȳ

)
=
(

cosh(
√
εGt) 1√

ε
sinh(
√
εGt)√

ε sinh(
√
εGt) cosh(

√
εGt)

)(
x0

y0

)
(17)

for −1< ε < 1. The mean position is therefore variable with time unless one setsx0 = 0.
We now study it for different cases.
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For a negativeε (−1< ε < 0) the mean position̄x(t) follows an ellipse centred at the
origin of thex–y plane

x(t)2+ 1

|ε|y(t)
2 = x2

0 +
1

|ε|y0 (18)

as might be seen from (17) with−1< ε < 0 and, therefore, the mean position of the tracer
particles moves in a periodic trajectory around the origin. For the caseε = −1 this ellipse
turns into a circle.

For positiveε the centre-of-mass of the tracer distributionx̄(t) moves rapidly away
from the origin along the asymptotic direction(1,

√
ε) as is found by diagonalizing (17)

and taking the eigenvector with nonvanishing asymptotic eigenvalue.
When we setε = 0, x̄(t) moves uniformly along the directiony(t) = y0.
Now, turning toσ under these circumstances, the equations for the components ofσ

are, according to (8) and (12),
dσxx

dt
= 2Gσxy + 4πD

( q
2π

)q
(σxxσyy − σ 2

xy)
1−q

2 (19)

dσxy
dt
= Gσyy + εGσxx (20)

dσyy
dt
= 2εGσxy + 4πD

( q
2π

)q
(σxxσyy − σ 2

xy)
1−q

2 (21)

which are to be solved with the initial conditionsσxx(t = 0) = σxy(t = 0) = σyy(t = 0) = 0.
This system of coupled differential equations does not admit an analytic general solution
and we will study it for different types of linear shear flows by settingε = −1, 0, 1.

1. Pure rotational flow (ε = −1). In a pure rotational flow, no direction is singled out
by any means and we must therefore assume thatσxx(t) = σyy(t). From (20) we then
conclude thatσxy(t) = 0 and equations (19) and (21) turn out to be the same, confirming
our hypothesis thatσxx(t) = σyy(t). The set of equations we are now confronted with is
exactly the same, with the same set of initial conditions, as if we had setG = 0 from the
very beginning and, therefore, the solutions in a pure rotational flow are the same as in a
static fluid medium, namely

σxx(t) = σyy(t) = q

2π
(4πqDt)1/q (22)

σxy(t) = 0 (23)

or, in terms of the coordinates correlations,

〈x2〉 = 〈y2〉 = 1

2π

q

2q − 1
(4πqDt)1/q (24)

〈xy〉 = 0 (25)

so that we obtain〈x2〉 ∼ t1/q as in (3). Thus, the flow does not affect the characteristic
exponent of diffusion.

2. Pure elongational flow (ε = 1). For pure elongational flows we have the same
differential equation and the same initial condition again both forσxx and forσyy , whence
one necessarily hasσxx(t) = σyy(t) and the equations to be solved are

dσxx
dt
= 2Gσxy + 4πD

( q
2π

)q
(σ 2
xx − σ 2

xy)
1−q

2 (26)

dσxy
dt
= 2Gσxx. (27)
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From (26) and (27) it is easy to verify that

(σ 2
xx − σ 2

xy)
q−1

2 d(σ 2
xx − σ 2

xy) = 4π
D

G

( q
2π

)q
dσxy (28)

which is immediate to integrate and yields the functional relation betweenσxx and σxy .
Using this relation in (26) one obtains the equation(

dσxy
dt

)2

= 4G2σ 2
xy + 4G2

[
2π(q + 1)

D

G

( q
2π

)q
σxy

] 2
q+1

(29)

which is immediate after changing toxi = [
2π(q + 1)DG−1

(
q

2π

)q]− 1
q+1 σ

q

1+q
xy . Imposing

the initial conditions, we finally obtain the solutions

σxx = σyy = q

4π

(
4πDq

ω

)1/q

sinh(2ωt)[sinh(ωt)]
1−q
q (30)

σxy = q

2π

(
4πDq

ω

)1/q

[sinh(ωt)]
1+q
q (31)

whereω = 2qG
q+1.

For short times (ωt � 1), the behaviour is

σxx = q

2π

(
4πDq

ω

)1/q

(ωt)1/q
(

1+ 3q + 1

6q
ω2t2+O(ω4t4)

)
(32)

σxy = q

2π

(
4πDq

ω

)1/q

(ωt)
1+q
q

(
1+ 1+ q

6q
ω2t2+O(ω4t4)

)
(33)

whereas in the long-time limit (ωt � 1) the dispersion grows exponentially as

σxy ' σxx ' q

4π

(
2πDq

ω

)1/q

exp

(
q + 1

q
ωt

)
. (34)

Figure 1. Log–log representation of the numerical results forσxx versust . In the resolution we
have takenG = 1 and 4πD

( q
2π

)q = 1.



1028 A Compte et al

Table 1. Comparison of the anomalous exponent forσxx , σxy andσyy in simple shear (ε = 0)
as computed with relations (36) and as found in a best fit analysis of the numerical results in
two intervals of time: 100< t < 1000 and 1000< t < 10 000. For the numerical resolution
we takeG = 1 and 4πD

( q
2π

)q = 1.

σxx σxy σyy

q αth α100 α1000 βth β100 β1000 γth γ100 γ1000

0.9 29
9 3.2176 3.2218 20

9 2.2191 2.2219 11
9 1.2205 1.2220

0.8 7
2 3.4907 3.4991 5

2 2.4934 2.4993 3
2 1.4960 1.4996

0.7 27
7 3.8420 3.8556 20

7 2.8459 2.8560 13
7 1.8498 1.8564

0.6 13
3 4.3098 4.3309 10

3 3.3153 3.3315 7
3 2.3207 2.3320

0.5 5 4.9633 4.9963 4 3.9707 3.9970 3 2.9779 2.9978
0.4 6 5.9392 5.9938 5 4.9494 4.9948 4 3.9594 3.9958
0.3 23

3 7.5528 7.6549 20
3 6.5679 6.6565 17

3 5.5825 5.6580

0.2 11 10.7285 10.9715 10 9.7537 9.9741 9 8.7778 8.9767
0.1 21 19.8456 20.8729 20 18.9024 19.8790 19 17.9553 18.8850

3. Simple shear (ε = 0). For the caseε = 0, the system of equations (19)–(21) does not
admit a closed analytic solution and we have solved it numerically. Figure 1 is a log–log
plot of σxx versus time for different values ofq. The apparent linearity of the plot for long
times seems to suggest that, fort � G−1, the components ofσ might follow a potential
law. We then try the following solutions in (19)–(21)

σxx = atα σxy = btβ σyy = ctγ (35)

and explore for what values of the parametersα, β andγ , the equations hold at sufficiently
long times. Straightforward computations yield

α = 2+ q
q

β = 2

q
γ = 2− q

q
(36)

which is in very reasonable agreement with the numerical results as might be seen from the
data in table 1.

We therefore have that

〈x2〉 ∼ t 2+q
q for t � G−1 (37)

for anomalous diffusion in a two-dimensional simple shear flow. Sinceq < 1, this represents
an enhancement of diffusion with respect to standard diffusion in simple shear flows, where
one has〈x2〉 ∼ t3 at long times [10, 11].

If one now takes fractional derivatives instead of a nonlinear term to describe anomalous
diffusion in a static fluid, any of the two following generalizations of the diffusion equation
is possible

∂αn

∂tα
= D∇2n 0< α < 1 (38)

∂n

∂t
= D∇2µn 0< µ < 1 (39)

where∂α/∂tα stands for the Riemann–Liouville fractional derivative of orderα and∇2µ

is minus the Riesz fractional derivative of order 2µ [8], which is defined as the inverse
Fourier transform of−k2µ. In this paper we shall focus on the latter since the former brings
about some mathematical difficulties, and it has recently been argued [12] that they are
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asymptotically equivalent, at least for bistable systems. The solutions of (39) for an initial
delta distribution are Ĺevy distributions whose mean squared displacement is infinite but
whose characteristic scaling is well defined [13, section 1.2.1.2], being of the form

x2 ∼ t1/µ. (40)

Turning now to diffusion in a simple shear flow, the fractional formalism leads one to
the equation

∂n

∂t
+Gy ∂n

∂x
= D∇2µn 0< µ < 1. (41)

Since the equations are linear and the field of velocity is wholly directed along thex-axis,
we make the reasonable assumption that the scaling in they-direction remains unchanged

y ∼ t 1
2µ so that we are led to the following equation in Fourier space

∂n̂

∂t
= [−iat1/2µkx −D(k2

x + k2
y)
µ]n̂ (42)

a being a constant. Equation (42) is easily integrable and we obtain the solution

n(x, t) =
∫
n̂(k, t)eik·x dk =

∫
e−D|k|

2µtei(kxx ′+kyy) dkx dky (43)

with x ′ = x−2µa/(1+2µ)t1+1/2µ. Solution (43) is a stable distribution whose characteristic
scaling is known to be (40), whence we obtain

x ′2+ y2 ∼ t1/µ (44)

and making use of the definition ofx ′ in terms ofx and t it is straightforwardly concluded
that

x2 ∼ t 1+2µ
µ . (45)

Now, it is interesting to compare this result with the one that we obtained in our analysis of
nonlinear diffusion in a simple shear flow (37). Thus, in equilibrium, anomalous diffusion
with 〈x2〉 ∼ tν may be described either as the consequence of nonlinear diffusion (1) with
q = 1/ν, or of the formalism of fractional derivatives (39) withµ = 1/ν. However, the
predictions concerning the change of the exponent of〈x2〉 in presence of simple shear are
different. The nonlinear diffusion formalism studied here yields〈x2〉 ∼ t2ν+1 whereas the
scheme based on fractional derivatives yields〈x2〉 ∼ tν+2. Of course, forν = 1 (classical
diffusion) both formalisms yield〈x2〉 ∼ t3 in the presence of a simple shear flow. Thus, the
experimental verification of the time behaviour of longitudinal displacements in a simple
shear flow could be able, in principle, to discriminate which of both formalisms is more
suitable as a description of anomalous diffusion in fluids. Of course, it is conceivable that
one model could be more suitable for fluids and the other one for fractal solids (where
some modifications should be made to include the two relevant parameters for diffusion in
fractals [7]), so that these experiments would not completely eliminate either formalism.

It is also remarkable that, whereas the result for classical dispersion under simple
shear flow〈x2〉 ∼ t3 is analogous to Richardson’s law for the dispersion of a tracer in
a turbulent flow (for a review on turbulent diffusion refer to [9]), the nonlinear diffusion
result 〈x2〉 ∼ t2ν+1 with ν > 1 bears a resemblance to the turbulent behaviour when one
takes intermittency into account [14], in which〈x2〉 is no longer proportional tot3 but to
some fractional power slightly higher than 3 (for instance, in theβ model, one would have
〈x2〉 ∼ t3.28 for an intermittency fractal dimensionD ' 2.83). Whether this parallelism is
just a coincidence or hints at a deeper underlying relation has not yet been explored.
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As a conclusion, we have here completed the analysis of diffusion in linear shear flows
by introducing anomalous diffusion in the form of a nonlinear diffusion term and by solving
the equations for several incompressible stationary linear shear flows in two dimensions.
The most interesting results have been found in a simple shear flow, which have enabled
a preliminary comparison with the scheme of fractional derivatives. A more thorough
analysis of anomalous diffusion in shear flows under the fractional picture is necessary in
order to establish the detailed relation between these two different descriptions of anomalous
diffusion and their convenience for diffusion in fluids.
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